2 research outputs found

    A new proactive feature selection model based on the enhanced optimization algorithms to detect DRDoS attacks

    Get PDF
    Cyberattacks have grown steadily over the last few years. The distributed reflection denial of service (DRDoS) attack has been rising, a new variant of distributed denial of service (DDoS) attack. DRDoS attacks are more difficult to mitigate due to the dynamics and the attack strategy of this type of attack. The number of features influences the performance of the intrusion detection system by investigating the behavior of traffic. Therefore, the feature selection model improves the accuracy of the detection mechanism also reduces the time of detection by reducing the number of features. The proposed model aims to detect DRDoS attacks based on the feature selection model, and this model is called a proactive feature selection model proactive feature selection (PFS). This model uses a nature-inspired optimization algorithm for the feature subset selection. Three machine learning algorithms, i.e., k-nearest neighbor (KNN), random forest (RF), and support vector machine (SVM), were evaluated as the potential classifier for evaluating the selected features. We have used the CICDDoS2019 dataset for evaluation purposes. The performance of each classifier is compared to previous models. The results indicate that the suggested model works better than the current approaches providing a higher detection rate (DR), a low false-positive rate (FPR), and increased accuracy detection (DA). The PFS model shows better accuracy to detect DRDoS attacks with 89.59%

    Malware Detection Using Deep Learning and Correlation-Based Feature Selection

    No full text
    Malware is one of the most frequent cyberattacks, with its prevalence growing daily across the network. Malware traffic is always asymmetrical compared to benign traffic, which is always symmetrical. Fortunately, there are many artificial intelligence techniques that can be used to detect malware and distinguish it from normal activities. However, the problem of dealing with large and high-dimensional data has not been addressed enough. In this paper, a high-performance malware detection system using deep learning and feature selection methodologies is introduced. Two different malware datasets are used to detect malware and differentiate it from benign activities. The datasets are preprocessed, and then correlation-based feature selection is applied to produce different feature-selected datasets. The dense and LSTM-based deep learning models are then trained using these different versions of feature-selected datasets. The trained models are then evaluated using many performance metrics (accuracy, precision, recall, and F1-score). The results indicate that some feature-selected scenarios preserve almost the same original dataset performance. The different nature of the used datasets shows different levels of performance changes. For the first dataset, the feature reduction ratios range from 18.18% to 42.42%, with performance degradation of 0.07% to 5.84%, respectively. The second dataset reduction rate is between 81.77% and 93.5%, with performance degradation of 3.79% and 9.44%, respectively
    corecore